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Mirror symmetry breaking through an internal degree of freedom leading to directional motion
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~Received 7 November 2000; published 26 February 2001!

We analyze here the minimal conditions for directional motion~net flow in phase space! of a molecular
motor placed on a mirror-symmetric environment and driven by a center-symmetric and time-periodic force
field. The complete characterization of the deterministic limit of the dissipative dynamics of several realiza-
tions of this minimal model reveals a complex structure in the phase diagram in parameter space, with
intertwined regions of pinning~closed orbits! and directional motion. This demonstrates that the mirror sym-
metry breaking, which is needed for directional motion to occur, can operate through an internal degree of
freedom coupled to the translational one.
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The possibility of motion rectification at the Brownia
scale from nonequilibrium fluctuations is an interesting qu
tion already posed by Smoluchowski@1# and Feynman@2#. It
has been shown that directional motion~the appearance o
net flow in phase space! of Brownian particles, without any
macroscopic gradient or force, can be achieved provided
the potential exhibits spatial asymmetry and detailed bala
is broken. This latter condition assures that the system is
of equilibrium. Systems with a periodic potential profile b
spatial asymmetry, calledratchets, have been addressed
systems in which nonequilibrium fluctuations can induce
rectional motion@3#. They have attracted much attention o
the basis that they can help to understand the physic
molecular motors@4#, along with the possibilities they ope
for using these ideas in superconductors@5#, Josephson junc
tions @6#, quantum dots@7#, and in the promising world of
nanotechnology@8#.

Hereon, we will focus on ‘‘motor’’ systems such that the
internal degrees of freedom are essential for net directio
motion to occur. The motivation for this problem came in
tially from the~bio!molecular motors field when it was foun
@9# that kinesin direction of motion along microtubules cou
be reversed by modifying the architecture of a small dom
of the protein called ‘‘neck region.’’ These discoveries cou
suggest that the mirror-symmetry-breaking mechanism
sponsible for the directional motion performed by these p
teins could lie in their own structure rather than in their e
vironment. In this paper we will consider the type of syste
with a mirror-symmetric environment for its translational d
gree of freedom (utr). The symmetry-breaking mechanis
acts through an internal degree of freedom (uint) coupled to
it; that is, we will consider a dimer model~two degrees of
freedom!. We are interested in the minimal conditions for t
operation of this system as a motor~being capable of moving
against an applied field!. Previous works have also analyze
directional motion in dimer models@10# but the potential for
utr considered was ratchetab initio. On the contrary, the
dimer model we present in this paper is inmersed in a s
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metric environment. This is also the case for the system
cently studied by@11#. There, internal degrees of freedo
~more than two! experience a flashing interaction potentia
while ours is a rocked system. After a complete character
tion of the deterministic limit of the dynamics, which revea
the basic nonlinear mechanics of directional motion, we w
briefly discuss the gross features of the Langevin dynam
of this model and its utility as a help to design new techno
gies at microscales and nanoscales.

As a working mechanical visualization of this model, o
can use two overdamped and coupled Brownian partic
with positionsu1 andu2 @so utr51/2(u11u2) anduint5u2
2u1# moving in a periodic, symmetric potentialV(u11)
5V(u)5V(2u) and being driven by center-symmetric p
riodic forces Fi52Fi(t1T/2)i 51,2 of period T52p/w
@12#. In the deterministic limit, the equations of motion rea

u̇152V8~u1!2]1W~u1 ,u2!1F1~ t !, ~1!

u̇252V8~u2!2]2W~u1 ,u2!1F2~ t !. ~2!

We impose onW(u1 ,u2) the general condition of being
function of the relative distanceuint5u22u1, so the partial
derivatives with respect tou1 and u2 verify ]1W(u1 ,u2)5
2]2W(u1 ,u2). We will consider the cases in whichW is a
convex and a nonconvex function ofuint.

Equations~1! and~2! remain invariant under the symme
try transformations (u1 ,u2 ,t)→(2u2 ,2u1 ,t1T/2) pro-
vided that F1(t)5F2(t) and (u1 ,u2)→(2u2 ,2u1) if
F1(t)52F2(t). With this proviso one can easily show th
any averaged ‘‘directional motion’’ in phase space is nec
sarily ~and straightforwardly! null : if there exists a solution
of Eqs. ~1! and ~2! with nonzero velocity, by symmetry we
can find another solution with the same velocity but oppos
sign, so no net motion can be observed when averaging
the phase space. Directional motion in this strong sense
only occur if the inequalityF1(t)Þ6F2(t) holds, regardless
of the specific form~convex or nonconvex! of the interaction
potentialW. Taking Fi(t) from the class of functionsF(t)
5Fac sin(vt12pd) @the simplest periodic center-symmetr
function F(t)52F(t1T/2)#, there are two ways of break
ing the symmetry of this system@F1(t)Þ6F2(t)#.
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~i! maxt F1(t)Þmaxt F2(t).

~ii ! d1Þd2 mod 1
2 .

That is, applying forces on each particle with~i! different
amplitude or~ii ! different phase. We will focus on the limi
cases for each situation: we will considerFac

(1)(t)50 and
Fac

(2)(t)Þ0 as well asd150 andd2Þ0. Any other situation
verifying the conditionF1(t)Þ6F2(t) is just a combination
of these two possibilities.

In particular, most numerics have been performed w
the simplest choices

V~u!5
Q

~2p!2
cos~2pu!, W~u1 ,u2!5

K

2
@~u22u1!2 l 0#2.

~3!

The convexity ofW and the dissipative character of the d
namics have the important consequence that the partial o
among initial conditions is preserved~monotonicity property
or ‘‘no-passing rule’’@13#!. The monotonicity property say
that if at a timet5t0 two initial conditionsu,v verify that
u1(t0),v1(t0) and u2(t0),v2(t0), then for any timet.t0
the inequalitiesu1(t),v1(t) and u2(t),v2(t) hold. This
property leaves small room for deterministic complexities
this nonintegrable dynamics. For example, the asympt
mean velocity of all trajectories in the phase space is uniq
and vibrating pinned solutions~closed orbits! cannot coexist
with mobile ones. The choice ofW(u1 ,u2) implies another
symmetry relation: the system remains invariant under
transformation (u1 ,u2 ,l 0)→(2u1 ,2u2 ,12 l 0). That is, if
we have a mobile solution of Eqs.~1! and~2! for a valuel 0
we have another mobile solution with opposite velocity
12 l 0. For fixed values of (Q,K,l 0) we have approximated
numerically to optimal accuracy the functionJ(Fac ,v)
whereJ is defined as the asymptotic flow in phase spacJ
5^u̇tr&.

In Figs. 1~a! and 1~b! theJ(Fac) profiles at typically low
(v52p30.01) and high frequencies (v52p30.1) for
F1(t)50 andF2(t)5Fac sin(vt) @case~i! —different ampli-
tudes# are shown for the values (Q,K,l 0)5(2,1,1/4). As can
be seen from Fig. 1~a!, the complex stairlike structure of th
relationJ(Fac) for low frequencies is qualitatively indistin
guishable from those exhibited by single-particle rocki
ratchets ~asymmetric potential!. However, when the fre-
quency is increased, the direction of motion for fixedl 0 can
be either positive or negative@Fig. 1~b!#, something which
cannot occur in deterministic single-particle rocking ratche
The primary structure of mobility bands inFac separated by
vibrating pinned solutions is well understood in terms
saddle-node bifurcations signaling the onset of global flow
phase space. Figure 1~c! shows the bifurcation diagram o
pinned ~vibrating! solutions.f represents the mean valu
over a period of the external force of the traslational variab
f5^utr&T . Thick lines represent stable orbits whereas t
ones represent unstable ones. This bifurcation diagram ne
determines the intervals of motion inFac as well as the loca
sign of J in both interval’s edges. The numerical inspecti
of the scaling of intermittencies density is one of a typ
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intermittency scenario~associated here with quasiperiodici
and frequency locking!, giving the staircase aspect ofJ(Fac)
close to the mobility onset.

In Fig. 2~c! an example of theJ(Fac) profile for F1(t)
5Facsin(vt), F2(t)5Fac sin(vt12pd) @case~ii ! —different
phase# with (v,d)5(2p30.05,0.35)@Q,K,l 05(2,1/2,1/4)
shows clearly the complex alternation of positive and ne
tive flows in the phase space. Again the mobility bands

FIG. 1. ~a! and ~b! Flow as a function of the amplitude of th
external forceFac at two different frequency values.~c! Bifurcation
diagram using the mean value over a period ofutr f5^utr&T as
relevant magnitude forv52p30.1. Intervals between vertica
lines correspond to mobility bands inFac .
0-2
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MIRROR SYMMETRY BREAKING THROUGH AN . . . PHYSICAL REVIEW E63 031110
Fac , when (v,d) remains fixed, appear after the collision
stable and unstable orbits by means of a saddle-node b
cation. In Fig. 2~a! we have plotted forv52p30.05 the
width in Fac of the mobility bands at different values ofd.
Figure 2~b! shows the values ofFac where the first and sec
ond bifurcations occur, that is, the smaller value ofFac
where the stable and unstable orbits collide~depinning tran-
sition! and the nearest value where they emerge again~pin-
ning transition!, which determines the width of the first mo

FIG. 2. ~a! Mobility bands inFac at v52p30.05 as a function
of the phase differenced. ~b! Lower and upper values ofFac for the
first mobility band as a function ofd. ~c! Dependence of the veloc
ity with Fac for (v,d)5(2p30.05,0.35).
03111
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bility band. As usual, very simple dynamics reve
astonishingly complex phase diagrams whenever time
length scale competition plays a role.

We want to stress that the rectification mechanisms in
models presented here are completely different from ot
rocking ratchet systems with internal degrees of freed
~dof! @10#, where the symmetry is brokenab initio by the
asymmetric potentialV(u). The only system with a symmet
ric environment for the traslational dof. in which symmet
breaking comes through the internal dof. is the flashing s
tem ~as oposed to rocking! studied by Portoet al. @11#. We
also remark that the rectification mechanisms for the ca
numerically studied in the preceeding paragraphs show s
differences: in case~i! we observe directional motion even
the adiabatic limit~slow varying forces! whereas in case~ii !
directional motion occurs only at finite frequencies. Wh
applying forces with different amplitudes, the ratchet effe
lies in the fact that one particle acts as a cargo, so it is ea
to move the system in the ‘‘driver’’ particle direction than
the other. In Fig. 3 it can be clearly seen that the depinn
force is smaller in the driver’s direction than in the othe
When applying different phases, the ratchet effect is m
subtle: the combined effect of phase value and strengthFac
determines which particle plays the role of cargo and wh
one the role of driver. The absence of the adiabatic limit
this case~ii ! precludes the use of time-independent schem
for understanding rectification in an intuitive way. In Fig.
two trajectories corresponding to both limit situations@cases
~i! and~ii ! above# analyzed are drawn. Although our syste
is a rocking ratchet, there is an alternative view in whic
looking at the equations of motion for the traslational va
ableutr ,

u̇tr5
Q

2p
sin~2putr !cos~puint!1

1

2
@F1~ t !1F2~ t !#, ~4!

one can see for both situations, cases~i! and~ii !, that the time
dependence~periodic or quasiperiodic! of uint allows the in-
terpretation of the first term on the right-hand-side~rhs! as a
flashing potential forutr . The directional motion can thus b

FIG. 3. Flux J in the presence of a constant force: it can
clearly seen that the depinning force is smaller in the ‘‘drive
particle direction~positive one!.
0-3
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seen as the result of the adequate synchrony between e
nal force onutr and the periodic flashing potential.

When the convexity condition on the interaction potent
W(u1 ,u2) is removed and nonconvex interaction~such as
double-well or Lennard-Jones! potentials are considered, th
monotonicity property~which severely restricts the complex
ity of the dynamics! is lost, and generically the space
partitioned in basins of attraction corresponding to attrac
with different asymptotic velocities. The description of th
dynamics becomes thus more complex. The phase por
shows, for certain regions of parameter values, chaotic
tractors and there appear new bifurcations~other than that
observed for the convex case: pitchfork, generic saddle-n
and stability interchange! as the parameters change. Anywa
the existence of net flow~i.e., a nonzero phase-space avera
of asymptotic velocities! in phase space is a generic prope
in wide regions of parameter space, as in the convex ca

We are dealing with rockinglike systems@3# where the
rectification mechanism is completely deterministic, so wh
introducing noisej1(t) andj2(t) in Eqs.~1! and ~2! @white
Gaussian noise with correlation function̂j i(t)j j (s)&
5Dd i , jd(t2s), i , j 51,2, beingD5kBT the diffusion coef-
ficient# the mobility bands widen~fluctuation-induced depin
ning! andJ decreases with increasing noise strength~within
the deterministic mobility bands!. Both phenomena are ea

FIG. 4. Deterministic trajectories@u1(t) dashed line andu2(t)
solid line# for the two models discussed.~a! corresponds to differen
amplitudes@case~i!# (v,Fac)5(2p30.01,0.35) and~b! to differ-
ent phases@case~ii !# (v,Fac ,d)5(2p30.05,1.284,0.35).
76
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ily explained in the limit of small noise@14#. For highD the
phenomenon of current reversal@15# arises too and when
noise strength is high enough diffusive motion domina
and no directional motion can be observed.

The proteins of the kinesin superfamily are just compos
of two globular ‘‘heads’’ ~catalitic domains that move ove
the microtubule using the energy delivered in ATP hydro
sis!. As mentioned before, recent experimental work su
gests that the mechanism for directionality may rest on
characteristics of the flexible structure joining both domai
ATP-hydrolysis induces conformational changes in the
proteins, that is, acts through their internal degrees of fr
dom that may provide the symmetry breaking needed for
directional motion along the microtubule. The detailed mo
eling of these conformational changes of the kinesin is
yond the scope of this work; nevertheless, the generic mo
discussed in this paper could help us to understand in
simplest mechanical terms the role of the internal degree
freedom in molecular motors.

Rigorous results on general simple models like this co
serve to guide or inspire new technological applications,
pecially in the field of nanotechnology. A simple nanosca
realization of the type of motors considered here would c
sist of clusters of entities~particles or macromolecular agre
gates! with different electrophoretic mobilities joined with
the aid of ‘‘flexible’’ molecules or polymers. In order to
reproduce the symmetric environment it will suffice to pla
this engine in a row of symmetric obstacles~electrodes, for
instance!. When applying an ac electric field, because of t
difference in the electrophoretic mobilities, different period
forces will act on each cluster, making it possible to obse
directional motion.

In summary, the analysis of these minimal models co
vincingly demonstrates that the mirror symmetry break
needed for directional motion to occur can act through
internal degree of freedom even though the overall posit
of the system experiences a symmetric environment.
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