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Mirror symmetry breaking through an internal degree of freedom leading to directional motion
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We analyze here the minimal conditions for directional motipat flow in phase spag@f a molecular
motor placed on a mirror-symmetric environment and driven by a center-symmetric and time-periodic force
field. The complete characterization of the deterministic limit of the dissipative dynamics of several realiza-
tions of this minimal model reveals a complex structure in the phase diagram in parameter space, with
intertwined regions of pinningclosed orbity and directional motion. This demonstrates that the mirror sym-
metry breaking, which is needed for directional motion to occur, can operate through an internal degree of
freedom coupled to the translational one.
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The possibility of motion rectification at the Brownian metric environment. This is also the case for the system re-
scale from nonequilibrium fluctuations is an interesting quescently studied by[11]. There, internal degrees of freedom
tion already posed by Smoluchowsgki] and Feynmanh2]. It (more than twd experience a flashing interaction potential,
has been shown that directional motitthe appearance of While ours is a rocked system. After a complete characteriza-
net flow in phase spag®f Brownian particles, without any tion of the deterministic limit of the dynamics, which reveals
macroscopic gradient or force, can be achieved provided thdhe basic nonlinear mechanics of directional motion, we will
the potential exhibits spatial asymmetry and detailed balanceriefly discuss the gross features of the Langevin dynamics
is broken. This latter condition assures that the system is owf this model and its utility as a help to design new technolo-
of equilibrium. Systems with a periodic potential profile but gies at microscales and nanoscales.
spatial asymmetry, callethtchets have been addressed as As a working mechanical visualization of this model, one
systems in which nonequilibrium fluctuations can induce di-can use two overdamped and coupled Brownian particles,
rectional motion3]. They have attracted much attention on With positionsu; andu, [sou"=1/2(u;+u,) andu™=u,
the basis that they can help to understand the physics of u;] moving in a periodic, symmetric potentiai(u+ 1)
molecular motorg4], along with the possibilities they open =V(u)=V(—u) and being driven by center-symmetric pe-
for using these ideas in superconducfd} Josephson junc- riodic forces F;j=—F;(t+T/2)i=1,2 of period T=2n/w
tions [6], quantum dotg7], and in the promising world of [12]. In the deterministic limit, the equations of motion read
nanotechnology8].

Hereon, we will focus on “motor” systems such that their Up=—V’(ug) = d;W(Uy,Up) +Fy(t), (1)
internal degrees of freedom are essential for net directional .
motion to occur. The motivation for this problem came ini- U= —V'(Up)— d,W(uq,uU,) +Fo(t). (2

tially from the (bio)molecular motors field when it was found
[9] that kinesin direction of motion along microtubules could We impose onW(u,,u,) the general condition of being a
be reversed by modifying the architecture of a small domairfunction of the relative distance™'=u,—u,, so the partial
of the protein called “neck region.” These discoveries couldderivatives with respect ta; andu, verify d;W(uy,u,)=
suggest that the mirror-symmetry-breaking mechanism re=d,W(u,,u,). We will consider the cases in whidW is a
sponsible for the directional motion performed by these proconvex and a nonconvex function of'.
teins could lie in their own structure rather than in their en- Equations(1) and(2) remain invariant under the symme-
vironment. In this paper we will consider the type of systemstry transformations ;,u,,t)—(—u,,—u,t+T/2) pro-
with a mirror-symmetric environment for its translational de- vided that Fq(t)=F,(t) and @U,u,)—(—U,,—uy) if
gree of freedom '"). The symmetry-breaking mechanism F,(t) = —F,(t). With this proviso one can easily show that
acts through an internal degree of freedam"() coupled to  any averaged “directional motion” in phase space is neces-
it; that is, we will consider a dimer modétwo degrees of sarily (and straightforwardlynull : if there exists a solution
freedon). We are interested in the minimal conditions for the of Egs. (1) and (2) with nonzero velocity, by symmetry we
operation of this system as a motbeing capable of moving can find another solution with the same velocity but opposite
against an applied fieldPrevious works have also analyzed sign, so no net motion can be observed when averaging over
directional motion in dimer mode[d.0] but the potential for the phase space. Directional motion in this strong sense can
u'" considered was ratcheb initio. On the contrary, the only occur if the inequalityF,(t) # = F,(t) holds, regardless
dimer model we present in this paper is inmersed in a symef the specific form{(convex or nonconveof the interaction
potential W. Taking F;(t) from the class of function&(t)
=F ¢ Sin(wt+2m) [the simplest periodic center-symmetric
* Author to whom correspondence should be addresed. Email adunction F(t)=—F(t+T/2)], there are two ways of break-
dress: scilla@posta.unizar.es ing the symmetry of this systeft(t) # = F,(t)].
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(i) max Fy(t)#=max Fy(t). a)

(ii) 8,# 8, mods.

That is, applying forces on each particle with different
amplitude or(ii) different phase. We will focus on the limit 0015
cases for each situation: we will considetY(t)=0 and 0.06
ngc)(t)aﬁo as well asé; =0 andé&,#0. Any other situation
verifying the conditionF(t) # = F,(t) is just a combination
of these two possibilities.

In particular, most numerics have been performed with
the simplest choices 0.02

®w=27001

0.010

0.04 ¢ 0.005

J (Fye)

0.000
419 420 421 422 423

K 0.00
cog2mu), W(Ulauz)zg[(uz_uﬂ_'o]z- 0 2 4 6 8

©)

V(u)= (2m)?

b) ®=270.1

The convexity ofW and the dissipative character of the dy-
namics have the important consequence that the partial order ol -
among initial conditions is preservéohonotonicity property LM —
or “no-passing rule”[13]). The monotonicity property says 0.075 \
that if at a timet=t, two initial conditionsu,v verify that p

Uy (to) <vi(to) andu,(ty)<vs(ty), then for any timet>t, 005 % \
the inequalitiesu,(t) <wv(t) and u,(t)<wv,(t) hold. This 0.025 @ |
property leaves small room for deterministic complexities of ‘ % 0 63 058 075 076 o
this nonintegrable dynamics. For example, the asymptotic 0l— !
mean velocity of all trajectories in the phase space is unique,
and vibrating pinned solutionglosed orbity cannot coexist -0.025
with mobile ones. The choice & (u,,u,) implies another 0
symmetry relation: the system remains invariant under the
transformation (4 ,u,,lg)—(—us,—U,,1—1y). That is, if C)
we have a mobile solution of Eqgél) and(2) for a valuel g

we have another mobile solution with opposite velocity for

1-1,. For fixed values of Q,K,l;) we have approximated O \JN\

J (Fye)

numerically to optimal accuracy the function(F,.,®) 15
where 7 is defined as the asymptotic flow in phase spdce
_ <Utr>_ ([)

In Figs. 1@ and Xb) the J(F,.) profiles at typically low 1
(w=2m7x0.01) and high frequencieswE27x0.1) for
F1(t)=0 andF,(t) = F,.sin(wt) [case(i) —different ampli- 05 O ’\
tuded are shown for the value),K,l,)=(2,1,1/4). As can ’
be seen from Fig. (&), the complex stairlike structure of the
relation 7(F,.) for low frequencies is qualitatively indistin- 0
guishable from those exhibited by single-particle rocking
ratchets (asymmetric potential However, when the fre-
quency is incr.e:ased’ the di.reCt.ion of motion for. fi)l@d:gﬂ FIG. 1. (a) and (b) Flow as a function of the amplitude of the
be either pos.ltlve or ngga‘gl\,{ei_lg. 1b)], §0meth|ng which external forceF . at two different frequency value&) Bifurcation
cannot_ occur in deterministic §!ngle-part|cle rocking ratchetsdiagram using the mean value over a periodubf ¢=(u'"); as
The primary structure of mobility bands . separated by  gjevant magnitude foro=27x0.1. Intervals between vertical
vibrating pinned solutions is well understood in terms of|ines correspond to mobility bands ..
saddle-node bifurcations signaling the onset of global flow in
phase space. Figurgcl shows the bifurcation diagram of intermittency scenarigassociated here with quasiperiodicity
pinned (vibrating) solutions. ¢ represents the mean value and frequency locking giving the staircase aspect gtF )
over a period of the external force of the traslational variableclose to the mobility onset.
¢=(u")r. Thick lines represent stable orbits whereas thin In Fig. 2(c) an example of the/(F,.) profile for F(t)
ones represent unstable ones. This bifurcation diagram neatlyF, sin(wt), F,(t) = F 4. Sin(wt+276) [case(ii) —different
determines the intervals of motion iy as well as the local phasé with (w,8)=(27x0.05,0.35)[Q,K,l,=(2,1/2,1/4)
sign of 7 in both interval’s edges. The numerical inspectionshows clearly the complex alternation of positive and nega-
of the scaling of intermittencies density is one of a type-ltive flows in the phase space. Again the mobility bands in
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FIG. 2. (a) Mobility bands inF,. at o=27X0.05 as a function
of the phase differencé. (b) Lower and upper values &%, for the
first mobility band as a function of. (c) Dependence of the veloc-

ity with F, for (w,8)=(27x0.05,0.35).

Fac, when (w, ) remains fixed, appear after the collision of
stable and unstable orbits by means of a saddle-node bifur-
cation. In Fig. 2a) we have plotted forw=27x0.05 the
width in F 4. of the mobility bands at different values of
Figure Zb) shows the values df ;. where the first and sec-
ond bifurcations occur, that is, the smaller value Fof,
where the stable and unstable orbits collidepinning tran-
sition) and the nearest value where they emerge agam
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FIG. 3. Flux J in the presence of a constant force: it can be
clearly seen that the depinning force is smaller in the “driver”
particle direction(positive one.

bility band. As usual, very simple dynamics reveal
astonishingly complex phase diagrams whenever time and
length scale competition plays a role.

We want to stress that the rectification mechanisms in the
models presented here are completely different from other
rocking ratchet systems with internal degrees of freedom
(dof) [10], where the symmetry is brokeab initio by the
asymmetric potentiaV(u). The only system with a symmet-
ric environment for the traslational dof. in which symmetry
breaking comes through the internal dof. is the flashing sys-
tem (as oposed to rockingstudied by Portcet al. [11]. We
also remark that the rectification mechanisms for the cases
numerically studied in the preceeding paragraphs show some
differences: in casé) we observe directional motion even at
the adiabatic limit(slow varying forceswhereas in caséi)
directional motion occurs only at finite frequencies. When
applying forces with different amplitudes, the ratchet effect
lies in the fact that one particle acts as a cargo, so it is easier
to move the system in the “driver” particle direction than in
the other. In Fig. 3 it can be clearly seen that the depinning
force is smaller in the driver’'s direction than in the other.
When applying different phases, the ratchet effect is more
subtle: the combined effect of phase value and streRgth
determines which particle plays the role of cargo and which
one the role of driver. The absence of the adiabatic limit for
this case(ii) precludes the use of time-independent schemes
for understanding rectification in an intuitive way. In Fig. 4
two trajectories corresponding to both limit situatideases
(i) and(ii) abovg analyzed are drawn. Although our system
is a rocking ratchet, there is an alternative view in which,
looking at the equations of motion for the traslational vari-
ableu",

utf:ﬂsin(zwu“)cos( 7u'™) + %[Fl(tH Fa()], (4)

one can see for both situations, caggand(ii), that the time
dependencéperiodic or quasiperiodjoof u™* allows the in-
terpretation of the first term on the right-hand-sides) as a

ning transition, which determines the width of the first mo- flashing potential fou'". The directional motion can thus be
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ily explained in the limit of small noisgl4]. For highD the
phenomenon of current reverddl5] arises too and when
noise strength is high enough diffusive motion dominates
and no directional motion can be observed.

The proteins of the kinesin superfamily are just composed
of two globular “head$ (catalitic domains that move over
the microtubule using the energy delivered in ATP hydroly-
sis). As mentioned before, recent experimental work sug-
gests that the mechanism for directionality may rest on the
characteristics of the flexible structure joining both domains.
a ) ATP-hydrolysis induces conformational changes in these
proteins, that is, acts through their internal degrees of free-
00 300 400 600 700 d_om t.hat may provide the symmetry breaking need_ed for the
directional motion along the microtubule. The detailed mod-
eling of these conformational changes of the kinesin is be-
yond the scope of this work; nevertheless, the generic model
discussed in this paper could help us to understand in the
simplest mechanical terms the role of the internal degrees of
freedom in molecular motors.

Rigorous results on general simple models like this could
seen as the result of the adequate synchrony between ext&erve to guide or inspire new technological applications, es-
nal force onu' and the periodic flashing potential. pecially in the field of nanotechnology. A simple nanoscale

When the convexity condition on the interaction potentialrealization of the type of motors considered here would con-
W(u,,u,) is removed and nonconvex interactigsuch as  sist of clusters of entitiegparticles or macromolecular agre-
double-well or Lennard-Jongpotentials are considered, the gate$ with different electrophoretic mobilities joined with
monotonicity propertywhich severely restricts the complex- the aid of “flexible” molecules or polymers. In order to
ity of the dynamics is lost, and generically the space is reproduce the symmetric environment it will suffice to place
partitioned in basins of attraction corresponding to attractorghis engine in a row of symmetric obstacl@dectrodes, for
with different asymptotic velocities. The description of the instance. When applying an ac electric field, because of the
dynamics becomes thus more complex. The phase portraiifference in the electrophoretic mobilities, different periodic
shows, for certain regions of parameter values, chaotic aforces will act on each cluster, making it possible to observe
tractors and there appear new bifurcatiqother than that directional motion.
observed for the convex case: pitchfork, generic saddle-node, In summary, the analysis of these minimal models con-
and stability interchangeas the parameters change. Anyway, vincingly demonstrates that the mirror symmetry breaking
the existence of net flowi.e., a nonzero phase-space averageneeded for directional motion to occur can act through an
of asymptotic velocitiesin phase space is a generic propertyinternal degree of freedom even though the overall position
in wide regions of parameter space, as in the convex caseof the system experiences a symmetric environment.

We are dealing with rockinglike systeni8] where the
rectification mechanism is completely deterministic, so when \we want to acknowledge P.J. Manz for technical sup-

introducing noiseg; () and&,(t) in Egs.(1) and(2) [white  port and useful discussions, J.J. Mazo for his careful reading
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FIG. 4. Deterministic trajectoriefau,(t) dashed line andi,(t)
solid ling] for the two models discusse@) corresponds to different
amplitudes[case(i)] (w,F4.)=(27X0.01,0.35) andb) to differ-
ent phasescase(ii)] (w,F,.,8) =(27x0.05,1.284,0.35).

Gaussian noise with correlation functiog&;(t) £;(s))
=Dg; jo(t—s), i,j=1,2, beingD=kgT the diffusion coef-
ficient] the mobility bands widefffluctuation-induced depin-
ning) and.7 decreases with increasing noise strengttihin

the deterministic mobility bandlsBoth phenomena are eas-
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